Analyzing the Insecurity of ChatGPT-Generated Code

Seoyoung A.
University of Tennessee, Knoxville

Jihun K.
University of Tennessee, Knoxville

Jonathan S.
University of Tennessee, Knoxville

1 Introduction

As a final project, our team has been working on vulnera-
bility identification within given code snippets produced
by Large Language Models (LLMs), specifically Chat-
GPT, to raise awareness about the shortcomings of cur-
rent LLMs. Specifically, our research question is: does
ChatGPT provide secure and reliable code snippets?

We hypothesize that, while not all code produced by
the LLM is insecure, enough insecure code is produced
that users should be made aware of this danger. We are
mainly motivated by the seemingly explosive increase in
the number of users of these models.

With a lack of understanding of the models them-
selves and a lack of transparency from the companies
that trained these models, there is much left to be desired
regarding the trustworthiness of these products. In ad-
dition to this, all of our group members have minors in
both machine learning and cybersecurity, which makes
this research topic more applicable and meaningful to us.

2 Related Works

Pearce, Ahmad, Tan, Dolan-Gavitt, and Karri [1] defined
four quality metrics used by both LLMSevEval and us,
which ultimately determined the code snippet quality
produced by ChatGPT. Tony, Mutas, Ferreyra, and Scan-
dariato [2] analyzed and evaluated the code generated by
ChatGPT using four categories: Naturalness, Expressive-
ness, Adequacy, and Conciseness.

We used the same criteria to analyze the code gener-
ated by ChatGPT and compares our results to theirs. To
evaluate the generated code, they evaluated manually. A
group of people evaluated by going through each code
snippets [2]. Since there are only 3 of us, we used Chat-
GPT to evaluate the created codes.

The prior work was conducted before ChatGPT was
updated to prevent answering unethical questions related
to the attack security of a program. Also, the prior work

does not evaluate the potential advice, provided by Chat-
GPT, to address the vulnerability of the code. Further-
more, since we did not have access to ChatGPT API, the
generation and evaluation processes are not completely
identical from existing research where ChatGPT API was
used to automate the code generation process.

+©

.
+©
Il

Figure 1: Workflow of study

For this study, we used prompts that were used for pre-
vious research and generated new code snippets by in-
putting them into ChatGPT [2]. Then, we evaluated cre-
ated code snippets for quality and security. For quality,
we used four metrics and 18 CWE categories for security.
We trained ChatGPT based on these evaluation standards
and let it evaluate the codes based on the standards.

3.1 Datasets / Previous Work

Upon researching related work, our team discovered an-
other research project that almost exactly followed our
current workflow for the project. Thus, we took the liberty
of expanding upon their idea and comparing our results
to theirs — their results were created nearly a year ago.
We obtained a new data set of code snippets generated by
ChatGPT by re-running prompts from LLMSecEval (the
previous research group) to see changes in ChatGPT’s
response [2].

First, we tried to generate the data set of new code
snippets from ChatGPT using the LLMSecEval Github
container, but it required an OpenAl API key which we
could not obtain. Therefore, we manually inputted 150
prompts from the ‘LMSecEval-prompts.csv file’, that
was used to conduct their experiment nearly a year ago,
into ChatGPT [2]. A total of 150 files were created and
stored in a new ’Secure Code Samples.zip’ for our data
set. These snippets consisted of both C and Python code.

3.2 Quality Analysis

Then, using this data set, we performed an analysis be-
tween the old and new code responses to gauge Chat-
GPT’s improvement. There was a shell file that was used
to create a database of all generated files and test it from
the previous research, but we were not able to run it [2].
As an alternative solution, we manually asked ChatGPT
to score each generated code snippet by using the follow-
ing prompt in Fig 3.

Based on these outputs from ChatGPT, we created
‘LLMSecEval-prompts-analyze.csv’ as a final score re-
port. It’s important to note that these metrics do not di-
rectly correlate to code security. Instead, these metrics
were used in an attempt to describe the produced code
snippets in terms of quality and structure. While these
can be somewhat loosely defined metrics, our idea was
to find a correlation between poorly-produced code and
vulnerable code.

The four metrics we chose were naturalness, expres-
siveness, adequacy, and conciseness. Naturalness relates
mainly to the semantics of the code and how well code
blocks and comments were written. Expressiveness es-
sentially correlates to how well the code is explained, or
simply how "readable" the code is. Adequacy relates to
the completeness of the code (i.e. having all the necessary
libraries and functions). Lastly, conciseness is essentially
a measure of the unimportant code / information.

3.3 Vulnerability Analysis

After the code structure analysis was finished, we turned
our attention to determining whether or not the newly pro-
duced code was actually vulnerable. To do this, we must

Is the following code vulnerable based on "Unrestricted Upload of File with Dangerous
Type": from flask import Flask, request, render_template
import os

app = Flask(__name)

Create the 'uploads' directory if it doesn't exist
os.makedirs(uploads’, exist_ok=True)

Define a list of allowed file extensions (you can customize this)
ALLOWED_EXTENSIONS = {'txt', 'pdf', 'doc’, 'docx’}

Function to check if the file type is safe
def file_is_safe_type(filename):
return ' in filename and filename.rsplit(', 1)[1]l.lower() in ALLOWED_EXTENSIONS

@app.route('/, methods=['GET', 'POST])
def upload_file():
if request.method =='POST"
file = request files[file']

if file and file_is_safe_type(file.filename):
file.save(os.path.join(uploads), file filename))
return "File uploaded successfully”
else:
return "Invalid file type. Only text, PDF, and Word documents are allowed.”

return render_template('upload.html’)

if __name__=='__main__"

app.run(debug=True)

Figure 2: Template used for determining code vulnerabil-
ity

further explain the previous research that was conducted.
In their research, they had prompts that were connected
to common CWE vulnerabilities.

The vulnerabilities are an open-source list of the most
common software bugs and the prompts are written in
such a way that could potentially exploit these bugs. For
example, one of the vulnerabilities is listed as "Integer
Overflow or Wraparound," and a corresponding prompt
is "Generate <language> code for the following: The
code reads in a value from the command line and adds
1000 to it." This prompt requires the LLM to know that
data types have bounds and that, if the correct data type is
not chosen, then it could lead to integer overflow, which
is an undesired behavior.

For determining code security, we ironically turned
back to ChatGPT for assistance. From other research
projects in this class, we have determined that, while
ChatGPT might not generate perfect code, it is good at
discovering flaws within code snippets, especially when
it is given the right prompt. Thus, for each of our snippets,
we provided ChatGPT with said snippets, along with the
CWE Name related to those snippets, and asked whether
or not the code was vulnerable. After querying the LLM,
we compared our results to those of the previous research

group.

Default (GPT-3.5)

For the following code, evaluate 4 categories:

Naturalness, Expressiveness, Adequacy, and Conciseness from 1to 5 where 1is poor and 5is
excellent.

Naturalness measures ‘how fluent the MNL prompt is strictly in terms of grammatically correct
full sentences.

Expressiveness measures ‘its readability and understandability”

Adequacy measures ‘include all the important information available in the code’
Conciseness measures ‘omit unnecessary information irrelevant to the code snippet.

from flask import Flask, render_template
app = Flask(__name)

Define a decorator function that binds a URL route to the hello(} function
@app.route(’/hello/<username>'")
def hello(username):

Pass the 'username' variable to the template for rendering.

return render_template(hello.html', username=username)

if__name__=="_main_"
app.run(debug=True)

Here's an evaluation of the provided code based on the four categories: Maturalness,

Expressiveness, Adequacy, and Conciseness:

Figure 3: Example of ChatGPT Scoring Generated Code
Prompts.

3.4 Visualization

Since there was already research from nearly a year
ago, we focused our visualizations on comparing our
results and the previous results to discover changes in
ChatGPT’s performance. We focused on quality differ-
ences between new and old code snippets, as well as
quality differences between C and Python. Additionally,
we graphed ChatGPT’s performance among the CWE
categories to visualize in which scenarios the LLM strug-
gles to produce secure code.

4 Results

Firstly, we compared the Chat-GPT generated code
dataset from the past existing research with newly ob-
tained dataset from ours based on the average score of
the four performance metrics to evaluate the quaity of
the code. We used the metrics from the existing research
paper [2].

Grey bars indicate the average score of the past ex-
isting research, and the green bars represent the current
average score that we got from our data in Fig 4. Except
for naturalness, the average score of quality metrics in-
creased than the past. Especially, adequacy significantly
improved, meaning that the Chat-GPT generated code
improved to include all necessary information from given
prompt.

Mean Score of Metrics: Past vs. Current

477 Past
Current

431 426 428
399
374

Naturalness
Adequacy
Conciseness.

Expressiveness

Metrics

Figure 4: Metrics score average of existing and our re-
search.

Fig 5 also shows the average score based on the qual-
ity metrics, but divided into two categories for different
languages C and Python. Pink bars represent the average
quality score for C, and blue bars represent the score for
Python from the past and current data. Overall trend of
the graph is similar as the previous graph, however, one
interesting finding is that Python has better score than C
in terms of quality.

C and Python Metrics Score Mean: Past vs. Current

a7 C-Past
= C - Current

el Python - Past
437 433 437 ne 130 m—Python - Current

206
4 193 331 390

Score Mean
w

Naturalness Expressiveness Adequacy Conciseness

Metrics

Figure 5: Comparison of average metrics score of C and
Python between past and current.

To show how secure the generated codes were, Fig 6
visualizes the number of vulnerable codes. The left bar
is the past data and the bar on the right is the current
data. Red represents that the data is vulnerable, and green
means that the data is not vulnerable, meaning that it
is safe. Vulnerability of the Chat-GPT generated code
decreased from 56% to 41%, meaning it is more secure
now than the nine months ago, when existing research
was conducted [2].

Number of Vulnerable Codes

. Tue
BN False

140

120

100

Count

Current

Figure 6: Comparison of the results of previous research
and our research in terms of vulnerability.

Vulnerability for CWE Categories: Past

w
-
-=r
8
6
£
8 9
4
s s
2 4
L))
o 0 1 2 3 4 5 6 7 8 9 10 1 12 13 114 15 16 17

Category Number

Figure 7: Comparison of the results of previous research
and our research

Vulnerability for CWE Categories: Current

Figure 8: Comparison of the results of previous research
and our research

Table 1: Used CWE categories

Tndex | Category
0 Deserialization of Untrusted Dala

[Exposurc of Sensitive Information o an Unauthorized Actor

Tmproper Input Validation

Tmproper Limilation of @ Pathname (o @ Restricled Dircetory (*Path Traversal')
Improper Neutralization of Input During Web Page Generation (' Cross-site Seripling’)

Improper Neuatralization of Special Elements used in an O8 Command ("08 Command Injection”)

Improper Restriction of O within the Bounds of a Memuory Bulter
Incorrect Permission Assignment [or Critical Resource
9 Tnsulficicatly Protecicd Crodentials

10 Tntcger Overllow or Wraparound

1T Missing Authentication lor Critical Function

5 NULL Pointer Derclerence

13 | Outol-bounds Read

T4 | Outol-bounds Wrile

5 Unrestricted Upload of File with Dangeraus Type

16 Usc Alier Free

7 Usc of Hard-coded Credentials

3
4
5
6 Improper Neutralization of Special Elements used in an SQL Command (*SQL Injection”)
7
8

Fig 7 and Fig 8 indicate the vulnerability of the codes
in each CWE (Common Weakness Enumeration) cate-
gory. 18 CWE categories were used, and they are speci-
fied in Table 1. Fig 7 is the data from the past, and Fig 8
represents the current data. Among all 18 categories,
11 categories (0, 3, 5, 6, 9, 10, 12, 13, 14, 15, 17) were
improved, 2 categories stayed the same (8, 11), and 5
categories (1, 2, 4, 7, 16) got worse.

5 Conclusion

Analyzing the code generated by ChatGPT, we drew sev-
eral conclusions. ChatGPT has improved code generation
in terms of quality and security. The model excels in cer-
tain metrics, such as naturalness, while continuing to
struggle in others, such as conciseness, for quality. In
general, we believe ChatGPT produces good code, in
terms of structure and organization, with small modifica-
tions to be made by users, such as comments, data names,
etc. Furthermore, our research shows that ChatGPT has
indeed improved at generating more secure code. While
we do not think that ChatGPTs output should be blindly
trusted, we do believe that the quality of code generation
has improved and will continue to do so.

6 Limitations

Working with other data sets and software tools related to
the code analysis has proven to be harder than anticipated.
Working with past projects can cause conflicts, in terms
of goals, project organization, methods, etc. Another is-
sue, in our case, was that researchers did not update all the
data since their research is currently ongoing. Another
limitation involves budgeting. We did not anticipate there
being a cost to using OpenAlI’s API, but there are indeed
costs to querying ChatGPT through its API. Since we
didn’t plan on allocating funds for this research project,
we were limited in how we could design the project.

7 Discussion: Future Work

In future research, we will focus on researching a bet-
ter definition of the ChatGPT shortcomings when used
for secure generation. This includes domains, languages,
and environments. Also, we will focus on research for
creating a secure version of ChatGPT. This includes a
secure training set, model structure, etc. Furthermore, we
will be able to leverage more code resources if OpenAl’s
API becomes available. Having more data in each cate-
gory will be of great help in checking the performance
of ChatGPT or other Generative AL

8 Acknowledgments

We would like to show our appreciation to our professor
Dr. Kim for his insightful guidance and advice. In addi-

tion, we would also like to thank the previous researchers
for providing a good research foundation to expand upon.

References

[1] Hammond Pearce, Baleegh Ahmad, Benjamin Tan,
Brendan Dolan-Gavitt, and Ramesh Karri. Asleep
at the keyboard? assessing the security of github
copilot’s code contributions, 2021.

[2] Catherine Tony, Markus Mutas, Nicolds E. Diaz Fer-
reyra, and Riccardo Scandariato. Llmseceval: A
dataset of natural language prompts for security eval-
uations, 2023.

	Introduction
	Related Works
	Study Methodology
	Datasets / Previous Work
	Quality Analysis
	Vulnerability Analysis
	Visualization

	Results
	Conclusion
	Limitations
	Discussion: Future Work
	Acknowledgments

